Classification of Mars Terrain Using Multiple Data Sources
Alan Kraut', David Wettergreen'

ABSTRACT. Data about Mars are being collected faster than they can be analyzed by geologists
for the creation of geologic maps. Because of this, automatic analysis of data would be very useful.
We develop a method for using data from multiple sources to classify areas of Mars terrain.
Each scene is over segmented into superpixels, and a feature vector is developed for each superpixel.
Several classification algorithms are examined for assigning a class to each superpixel. These
algorithms are trained using three different manual classifications with between 2 and 6 classes.
Automatic classification accuracies of 50%-80% are achieved in leave-one-out cross-validation
across 20 scenes using a generalized boosting classifier.

1. INTRODUCTION
The creation of geologic maps is critically important for planetary science. Geologic maps
identify spatial trends that indicate formative processes. They can represent mineralogical
properties, history of the area, structure of the terrain, or many other things [1]. These
maps are a way of distilling information about an area of terrain to be easily referenced.
Planetary scientists painstakingly infer separate units of surface material from all available
information—which may include orbital images, soil samples, and elevation maps—to
create them. We have created a tool for using orbital images of Mars to automatically
create first-pass approximations of geologic maps.

1.1. Motivation. Over the past decade huge amounts of data have been collected about

Mars in the form of orbital images. In some areas, these images have been analyzed by
planetary scientists to create geologic maps, but the sheer amount of data means that

most of Mars remains unmapped, and much of the data is nearly untouched.

The United States Geological Survey (USGS) is currently the primary organization creating
geologic maps of Mars. They have released maps of fewer than 30 regions of Mars [2].
While some of these are quite extensive, they leave most of the surface of Mars unmapped.

Because there is so much data available about Mars, a system that could draw attention to
specific regions of potential interest would be extremely valuable. We believe the best way
to accomplish this is to create automatic geologic classifications based on training
examples. This is, given a set of training scenes classified in any way, we will classify a new
scene using the same set of classes. Thus a scientist could find areas of Mars with a high
density of a desired terrain type by hand classifying some training examples, training the
system on those examples, and letting it classify the rest of the surface of Mars. Areas that
have a high density of that terrain type could then be further examined by the scientist.

" Robotics Institute, Carnegie Mellon

1.2. Prior work. Tomasz Stepinski has done work in automated recognition of Mars
landforms based on elevation data [3]. The work was quite successful in determining the
kind of land formation, such as craters and ridges. However, because it only uses elevation
data it would be insufficient for creating geologic maps. Geologic maps can be based on
the physical structure of the terrain, but can also be based on factors such as mineral
content, and how the soil was deposited. A classifier that uses only elevation data would
be incapable of examining features such as absorption spectra, which are a key indicator of
mineral content.

1.3. Problem and approach. Our goal is to automate the process of creating a geologic map
of the surface of Mars. This should use an arbitrary number of orbital images of the same
area to create an automatic classification. This is not expected to be as accurate as a hand
classification, but it should provide a useful idea of the character of different areas.

We pose the task of map making as finding a solution to the segmentation problem of
dividing the scene into a large number of areas, and the classification problem of assigning
a class to each of these segments. The structure of our method is shown in Figure 1.

Source Scene
Images | cropand |Structures _
T " Sagmentation
Register
Superpixels
Feature 522:::2 Training Hand
li .
Extraction Split Segments Classifications
Testing
Segments
Automatic

Classification

Classifier =

ﬁrain

Figure 1: Flow chart showing structure of classification method.

To accomplish the segmentation task we use a superpixel segmentation. A superpixel
segmentation has high recall, so that nearly all actual edges between map units are
represented, but can have low precision, meaning that having edges in the segmentation
that are not actually edges between map units is okay. Our method for creating these
segmentations is discussed in Section 2.

We then perform the classification task assuming that each superpixel will be composed
of a single class. The automatic classification is performed on a feature vector for each
superpixel. This consists of statistics about the image information within the superpixel,
and is detailed in Section 3. We examine Bayesian and boosting classifiers for performing

this step. Additionally, belief propagation is examined as a way to use the spatial relations
between superpixels. The classification algorithms are discussed in Section 5.

2. SUPERPIXEL SEGMENTATION
Fundamentally each pixel in the test image needs to be assigned a class. However, trying
to classify a single pixel is often infeasible [4]. We first over-segment the image into
chunks that were each assumed to be of one uniform class, called superpixels. This has
been shown to be useful in allowing higher level reasoning in classification. For example,
Greg Mori showed the ability of superpixel segmentations to assist in matching sections of
images to models, by examining many possible combinations of superpixels [5].

2.1. Initial segmentation. Our code is based on a two-step segmentation algorithm
developed by Mori. In this algorithm a random sampling of pixels in the image is taken,
and a graph is created with each of those pixels as a node. The edge weight between two
pixels is set to be the negative exponential of the maximum boundary probability (P?)
between them in the image. The P? is calculated as a sum of exponentials of the local
intensity and texture gradient of the image. This graph is made sparse by removing edges
with a weight below a certain threshold. A standard normalized cut (n-cut) algorithm is
then performed on this graph [6]. The results are interpolated to the remaining pixels.

2.2. Recursive segmentation. Because of the computational complexity of n-cutting, it is
frequently impractical to create the desired number of superpixels using a single pass. To
overcome this limitation, a small number of superpixels are created using the method
described above, and subsequently divided into smaller superpixels. The algorithm is
called recursively on each superpixel created at a single step, with a desired total number
of superpixels based on the area of the current region. This is done until enough
superpixels have been created. The results of this algorithm are shown in Figure 2.

Figure 2: Examples of segmentation algorithm on three scenes.

3. FEATURE GENERATION
In order to classify an image, we first create a vector of numbers to describe the section to
be classified. This is a feature vector. We create a feature vector for each superpixel. One
possible feature vector would simply be a vector of the pixel values from all channels in
the superpixel. However, in order to create an effective classifier, it is necessary to create
individual features that are correlated with the class of the superpixel.

In this section we will describe how we take a multi-channel image and create a feature
vector for a single superpixel. Each of these feature extractors can be applied to an
arbitrary channel (or sometimes multiple channels). When applied to different channels
they represent different sorts of information about the terrain. Table 1 summarizes the
features we developed, and they are described in greater detail below.

Feature Number of channels used Number of elements
Mean 1 1

Standard Deviation 1 1

Mean of Ratios 2 1

Laplacian 1 1 per scale

Laplacian of Ratios 2 1 per scale

Texton Histogram 1 16

MRS Filter Bank 1 8

Table 1: Feature extractors developed.

3.1. Mean and standard deviation. The simplest features we use in our feature vector are
the robust mean and standard deviation of a given channel across the super pixel. The
robust mean is calculated by removing the highest and lowest 10% of the data, and finding
the mean on the remaining data.

3.2. Ratio of channels. Another feature used is the ratio of two channels. Specifically, the
log of the ratio of two channels is taken pixel by pixel across the image. A logarithm is
used so that the scale of features in areas where the numerator image is more intense than
the denominator image will be the same as the scale in areas where the reverse is true.
This allows us calculate one ratio feature per pair of channels, instead of two. After these
values are computed across the image, the mean is taken over the superpixel.

This feature captures information about the relation between two channels, and is
expected to be most relevant when calculated using a pair of channels of two different
wavelengths. In order to capture geologic information it is important to consider the
relation between different wavelengths. Geologists use absorption spectra and emission
spectra to identify different compounds. Unfortunately we do not have enough data to
actually calculate spectra, but by calculating the ratio of responses at different
wavelengths, we expect to capture information relevant to color and mineral composition.
In the event that particular known minerals are being looked for, features could be

developed that correlate with how well the ratios of two or more wavelengths match a
specific emission spectrum.

3.3. Laplacian at multiple scales. The Laplacian is a filter which measures the difference of
one area of an image from the surrounding area. We use a difference of Gaussians
approximation of the Laplacian filter [7], with a square filter with 20 elements on either
side of the center. For example, Table 2 shows the filter used for ¢ = 0.5.

0.4038 0.8021 | 0.4038
0.8021 | -4.8233 | 0.8021
0.4038 0.8021 | 0.4038

Table 2: 3x3 Laplacian filter approximation

This filter only captures variations of a particular scale. Specifically, any given filter will
have a strong response for features with a radius of about o. In order to capture variations
in the image at a variety of scales, we use ¢ = 0.5(2"), with n between 2 and 8. Examples
of an image with the Laplacian filter run on it at various scales are shown in Figure 3.

(d)

Figure 3: Elevation map (a), and Laplacians computed with n=1 (b), n=3 (c), and n=4 (d).

Once the response of the Laplacian filter is computed, its mean is taken over the
superpixel to reduce it to a single-value descriptor. This is done once at each scale
specified, so that each scale has a single feature in the feature vector. It is additionally run
on the image created by taking the log ratio of channels, as described in Section 3.3.

This feature captures variation in the image. This is useful because it makes it robust to
lighting changes, gross changes in elevation between different sections of Mars, etc. For
luminosity channels this will represent the apparent lightness or darkness as compared to
the surrounding terrain, and for the elevation channel it will capture local depressions or
elevations in the terrain.

3.4. Texture features. One thing that is useful when classifying images is a representation
of the texture content of an image. Texture is a perceptually complex feature, and is
usually represented in image analysis by textons, which are archetypal responses to a set

of filters. Textons, particularly histograms of texton frequencies, have been shown to be
effective at discerning between different textures [8]. This is especially true when the
textons are generated from examples of textures to be classified.

3.4.1. Filter bank. We use the MR8 filter bank [8] (Figure 4) for the creation of textons.
The MRS filter bank consists of bar filters at six different orientations and three scales,
with both edge and symmetric filters, as well as a Gaussian and a Laplacian filter.

= = L) [} # =

- ~ \ l / ~
== Ny I\ l A
- .

Figure 4: MRS filter bank. Feature vector is maximum response to each row of
6 filters, plus the response to each of the bottom two filters.

We use the MR8 filter bank for two reasons. First, taking the maximum response across
orientations allows it to be rotation invariant. This is desirable because terrain type should
not depend on its orientation. Second, it captures different scales of texture. We would
like our filters to be able to differentiate between different scales because two geologically
distinct regions may have similar textures, but at different scales.

3.4.2. Texton generation. Textons are weighted sums of the filters in the filter bank, and
represent archetypes of local image response. They are calculated by using k-means
clustering on the 8-dimensional points generated by taking the MR8 response centered at
a given point in an image. Filter responses are taken across a large set of images, and the k
cluster centers of response vectors from all the images are used as the textons. We used
approximately 500 HRSC images of Mars in the visible and near IR wavelengths as the set
of images from which to compute textons.

3.4.3. Texture feature generation. Two types of texture features are generated for each
superpixel. First, the average MRS filter response across the superpixel is used for 8

features. Second, a histogram of texton frequencies across the superpixel creates another
feature for each texton being used.

In order to create the texton frequency histogram, each pixel in the image is first assigned
a texton. This is done by calculating the filter response at that pixel, and assigning the
texton with the nearest filter response by the L2 distance. Once each pixel has an assigned
texton, a histogram is created by counting the number of pixels associated with each
texton inside the superpixel. This histogram is normalized to make it invariant to
superpixel size, and each bin is used as a feature for the superpixel.

This set of features represents how often different textons appear in the superpixel. This
can help distinguish between different types of terrain, such as steep cliffs, sand dunes,
and cracked land.

3.4. Features used. Table 3 summarizes the elements of our final feature vector. Most
channels are cropped and registered images taken from Mars orbital assets. The exception
to this is “MOLA Slope”, which is the magnitude of the gradient of the MOLA height map.

Feature Channels and Parameters # elements
Mean HRSC IR, Red, Green, Blue, and ND, 6
MOLA Slope

Standard Deviation | HRSC ND, MOLA Slope 2

Mean of Ratios All pairs of narrow-band HRSC channels | 6
Laplacian MOLA Elevation, n=[2,4,5,6,7] 5
Laplacian HRSC ND, n=[2,4,6,7,8] 5
Laplacian of Ratios | HRSC Blue, HRSC IR, n=[2,4,5,6,7] 5

Texton Histogram HRSC ND 16

MRS Filter Bank HRSC ND 8

Table 3: Elements of feature vector.

This is the feature vector used for all classification methods we examined. We include all
the features we believe to be salient, but attempt to exclude redundant features. The
desire to exclude redundant features comes from concerns about runtime and overfitting.
Especially in training a boosting classifier (see Section 5), adding more features increases
the run time significantly. Also, our set of training images was not as large as would be
desirable, so adding spurious features would create a risk of overfitting. The more
uninformative features are added, the more likely it becomes that a correlation will be
observed in the training sample that is not representative of the overall population. Large
training sets help mitigate this problem by increasing how representative the training
sample is of the population. If the method is being used in such a way that it is trained
once and then used to classify a large number of images, it would likely be desirable to
include a larger set of features, because the cost is not as great.

4. Manually Labeled Data
Automatic classification methods rely on training data. While there are geologic maps of
various regions of Mars, they do not cover all the regions we were testing. In order to
create training data, we hand-labeled our sample scenes in a variety of ways. We created
one hand classification based on coarse terrain features, one based on regions exhibiting
Aeolian deflation, and one based on coarse classes distilled from existing USGS maps.

4.1. Terrain features. One hand classification we

Plains

created has four classes, corresponding roughly

with lowlands (such as crater basins, and valley

Lowlands

floors), slopes (such as the edges of craters and

valleys, and steep ridges), plains/plateaus, and
volcanos (large, smooth mountains). We expect -

that these classifications would be strongly

Slopes

correlated with features derived from elevation

Volcanos

maps. Examples of this hand classification can be

seen in Figure 6.

Figure 5: Terrain legend

Figure 6: Two sample images with terrain feature classifications.

4.2. Aeolian deflation. The removal of very fine dust

and sand by wind processes is known as Aeolian - Normal
deflation. On Mars these regions can be seen as

areas with a distinct deep purple color. Areas of

Aeolian deflation were fairly sparse. This - Aeclian Deflation
classification is expected to utilize features such as

ratios of wavelengths that are correlated with color.

It is also a test for the case of an uncommon class. Figure 7: Aeolian legend

Figure 8: Two sample images with Aeolian deflation classifications.

4.3. Geologic classification. The last hand classification
we created is based on the broad categories we saw Plains
repeatedly in USGS maps of Mars. Where possible this
classification was taken directly from those maps, but

we extrapolated to the best of our ability for other

Crater Material

regions. This classification consists of six classes,
corresponding to vallis materials, crater materials, - crerer il
other steep slopes (corresponding with class HNw on

USGS Mars geologic maps), crater fill, plains, and - Slopes
mountainous materials. This is expected to be the

manual classification that is closest to the expected

use case of this method. It is a complex classification - ol Hegerats
in that no single kind of feature is likely to be able to

do a good job distinguishing between all five classes. Mountain
Some examples of this classification can be seen in

Figure 10. Figure 9: Geologic legend

VS

.4\

Figure 10: Two sample images with USGS-based classifications. The image on

A

//

the left (Gusev Crater) has an existing USGS map.

5. Classification
We classify the data using a naive Bayes classifier and a boosting classifier, and use the
results from both classifiers to inform a belief propagation network.

5.1. Naive Bayes classifier. A naive Bayes classifier operates by calculating the probability of
an example being of a given class using Bayes’ Rule, and selecting the class with the
highest probability. Specifically, we want to compute P(C|F), where C is the segment’s
class, and F is its feature vector. For a single class ¢; and feature f; we can write this as

P(file)P(ci)
P(cifi) = “L4LEED

When there are many of these features, we compute the probability of the joint as the
product of the probabilities, i.e.

P(fele,
P(aIF) = P(c J]—[f,’z;'c)

Once the probability of each class has been computed, the class with the highest
probability can be selected. Because all the P(f;) will be the same for each class, this can
be written as

X = argmax (P(cl-) 1_[P(fy |Ci)>
L k

Where x is the assigned class. P(c;) is calculated from the training data as the fraction of
the examples that are of class i. P(fy|c;) is calculated by adaptively assigning a set of
ranges to each feature, and then finding the fraction of examples of class i that has the
feature in each range.

5.2. Boosting classifier. Boosting is a method for creating a single classifier by combining
many weak classifiers—classifiers which are more accurate than chance, but would not be
good enough for the desired application by themselves. One very common boosting
algorithm is AdaBoost. AdaBoost was developed by Freund and Schapire [9], and has since
become a well studied algorithm which is commonly used. It trains many simple classifiers
(called base classifiers), assigns them weights based on their accuracy in classifying the
training set, and uses a weighted majority vote. This method has proven highly successful
in a wide variety of domains when a binary decision needs to be made.

However, AdaBoost is specific to a binary classification task. We would like to be able to
classify our data into an arbitrary number of classes. That is, there should be no hard
upper limit on the number of classes present in a hand segmentation used to train the
classification method. Because of this, we use an extension of AdaBoost. We modeled this
extension off the GrPloss algorithm [10].

The GrPloss algorithm creates an n-class classifier for data, given labeled training data. It
provides an initial weight vector to the training examples. At each iteration it trains a base
classifier. This classifier takes a feature vector, and returns an n-element vector of class
probabilities. The classifier is then assigned a weight based on its weighted error (the
classification error on the training set using the current weight vector), and examples
which were misclassified have their weight increased.

To classify a new example, a weighted average of the class probabilities from each of the
base classifiers is taken, and the maximum probability class is chosen.

We use a base classifier known as a decision tree. A decision tree makes a series of up to N
binary decisions, resulting in 2" possible outcomes, where N is the depth of the tree. We
use trees of depth 2. Deeper trees would result in a more discriminating base classifier, at
the cost of exponentially higher training time, and a greater risk of overfitting.

Each node of the decision tree divides the data it receives into two categories based on a
threshold on a single feature. If that feature is above the threshold, it is sent along one
branch of the tree to the next node, and if the feature is below the threshold, it is sent
along the other branch. Once a leaf is reached the decision tree returns a pre-set
probability vector for that leaf. The probability vector is set based on the training
examples which reach that leaf.

5.3. Belief propagation. In order to incorporate spatial information we use a loopy belief
propagation framework. Belief propagation (BP) is an algorithm that finds a solution for
the most likely class of each node in a directed graphical network [1]. It is often used to
find boundaries and smooth results when a good initial guess for node classification can
be given. For BP, each node has an associated vector of label evidence, ¢; (x;), the
probability of node i being of class x;, and each edge has a compatibility matrix,

Y ; (xi, %), the probability of node j being of class x;, given that node i is of class x;.

At each time step a message is sent on each edge leading away from a node based on all
messages leading to that node from any other direction. Specifically, the message from

node i to node j, m; ; (a), is given by:

m;; (x]) =2x, b (xi)lpi,j (xi'xj) [ken @y ™k, (x0)-

Once these messages converge, the belief at each node is calculated as
b; (x;) = ¢ (i) e iy Mie,i (i)
and the class with the largest value at node i is selected.

When being applied to results from the Bayesian classifier, the 1) matrix is calculated
using the edge probability (P?) already calculated in determining the superpixels,
normalized to be in the range [o0,1]. It is given by

(1 - Pil,)j)exi,xj X = x]

b
Pi,j exi'xj

Wiy (x %) =

xl'#:xj

where Orix; 1 the probability of x; and x; bordering each other, and Pilfj is calculated as the

average of P” across all pixels on the border between superpixels i and j.

When applied to the results from the boosting classifier, the compatibility matrix is
formed such that the initial classification boundaries would not change. Specifically, it is
given by

P (x0,x) = {(1 = D)0, X =%
R Dij0rx; Xi # X

where D; ; is 1if the two superpixels are the classified differently in the initial
classification, and o if they are the same. This is done because the boosting classifier tends
to create boundaries between classes in close to the right place, but sometimes sets the

entire region as the wrong class.

5. Results and Conclusion
We tested the classification method using leave-one-out cross validation on scenes. We
used 20 scenes, each divided into roughly 300 superpixels, so each trial trained on
approximately 5700 superpixels, and classified approximately 300 superpixels. The results
are summarized in Table 4.

Bayes Classifier Boosting Classifier
Without BP With BP Without BP With BP
Terrain 54% 60% 66% 64%
Aeolian 88% 90% 88% 87%
Geologic 47% 51% 49% 49%

Table 4: Average classification accuracies over all test images

Overall the boosting classifier performed slightly better than the Bayes classifier. The
naive Bayes classifier was marginally improved by the inclusion of belief propagation,
while the boosting classifier was not improved by belief propagation. We believe this to be
because turning the output of the naive Bayes classifier into a probability vector for use in
belief propagation is straightforward and principled, due to the probabilistic nature of
Bayes classifiers. On the other hand, the boosting classifier returns scores, not
probabilities, and it is not clear how these should be translated to the evidence vector.

Some typical results from the boosting classifier are shown below. Figure 11 shows a scene
using the terrain feature classification. This shows that some of our features successfully
incorporate spatial information. Specifically, the strip of correctly classified lowlands
around the edge of Gusev crater is roughly the width of the largest Laplacian of elevation
used in the classification. This indicates that the classifier could be improved by the
inclusion of features that use data from a larger spatial expanse of the image.

Figure 11: The terrain features hand classification (center) and automatic

classification (right) for the Gusev Crater scene.

Figure 12 shows a typical result from the geologic classification. This demonstrates
substantial confusion between the crater material and slopes classes. . Currently it is likely
that the examples for the valley slopes and crater material classes form overlapping balls
in the 52-dimensional space of the feature vector. It is possible that there is another
feature that could be computed in which these balls have a large separation compared to
their width. If such a feature exists, adding it would make the classes much more
distinguishable. It is also possible that these two classes should be divided differently in
the hand classification, such that each new class is more internally consistent, and has less
overlap with the others. For example, creating a subclass of crater material for ejecta
blankets could improve the classification accuracy.

Figure 12: The classification based on USGS maps for the Nili Fossae region.

Overall we believe that this method has much room for improvement, but that it
demonstrates the ability to effectively combine different types of information and to
generalize to different kinds of classification. There are two key areas for future work on
this project. It needs to be able to incorporate information about how different parts of
the scenes are arranged spatially. Ideally there would be some way to represent and learn
information such as which classes are likely to be near each other, and under what
circumstances. The alrogithm also needs to be able to use more data sources. Currently
the method does not allow for partial information data sources. That is, in order for a data
source to be used for any superpixel, it needs to have valid information for all superpixels.
This effectively limits us to using a single instrument which does not have complete
coverage of Mars. Solving this problem would allow much more data to be used in making
classification decisions.

REFERENCES
[1] B. Brodarik and J. Hastings. An Object Model for Geologic Map Information. Advances

in Spatial Data Handling, 2002.

[2] http://geopubs.wr.usgs.gov/docs/wrgis/mars.html

[3] T. Stepinski. Machine Learning Tools for Automatic Mapping of Martian Landforms.
IEEE Intelligent Systems, 2007.

[4] X. He, R. Zemel and D. Ray. Learning and Incorporating Top-Down Cues in Image
Segmentation. Computer Vision ECCV, 2006.

[5] G. Mori. Guiding model search using segmentation. IEEE International Conference on
Computer Vision, 2005.

[6]]J. Shi and]. Malik. Normalized Cuts and Image Segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 22(8), August 2000.

[7] S. Gunn. On the discrete representation of the Laplacian of Gaussian. Pattern
Recognition, 32, 1999.

[8] M. Salahuddin, M. Drew and Z. Li. A Fast Method for Classifying Surface Textures.
IEEE International Conference on Acoustics, Speech and Signal Processing, 2009.

[9] Y. Freund and R. Schapire. A decision theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, No. 5, 1997.

[10] G. Eibl and K-P. Pfeiffer. Multiclass boosting for weak classifiers. Journal of Machine
Learning Research, 6:189-210, 2005.

[11] K. Murphey, Y. Weiss and M. Jordan. Loopy Belief Propagation for Approximate
Inference: An Empirical Study. Uncertainty in Al, 1999.

